
4593 

(iii) We have tried to detect a special lability in the 
proximity of the amide group to the enol ether bond. 
Brief treatment (5 min) of the photoproduct III with 
methanolic HCl led only to V by etherification of the 
allylic hydroxyl. But on standing overnight with 
methanolic HCl at room temperature the lactam easily 
opened to a (rearranged) basic compound characterized 
by a hydrochloride (mp 118-124°), perchlorate (mp 
163-165°), and N-trifluoroacetyl derivative (mp 125°), 
all containing a new chromophore (XXmax 245 (e 3370), 
294 nm (e 885)) on the structure of which we hope to 
report soon. 

Studies with different solvents involving oxygen 
quenching point to a novel type of cage effect directing 
the intra- and z'rcfermolecular subsequent reactions of 
the photoexcited intermediates. 
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Tetracyclo[3.3.1.137.0' 3]decane. A Highly Reactive 
1,3-Dehydro Derivative of Adamantane 

Sir: 
The strain-free compound adamantane1 (1, Ci0Hi6) 

can be converted to a reactive 1,3-dehydro derivative 
(2, Ci0H14) by inversion and bonding of two bridgehead 
positions. This highly strained hydrocarbon, tetracy-
clo[3.3.1.13'7.01'3]decane (2), possesses a cyclopropyl 
group which readily undergoes addition reactions to 
form a variety of mono- and disubstituted adamantanes. 

H4 H5 H4b H5 

Reaction of 1,3-dibromoadamantane2 (1, X = Br) 
with a Na-K dispersion in refluxing heptane produces 2 
accompanied by ca. 10% of adamantane. Moderate 
thermal stability of compound 2 is shown by its analysis 
and separation using gas-liquid partition chromatog­
raphy (Carbowax columns at 150°, detector at 250°). 
Degassed solutions of 2 (0.04 M in heptane) are essen­
tially unchanged after 3 days at 100°. However, even 
in dilute solutions at room temperature, reaction of 2 
with air occurs promptly (ti/, = ca. 6 hr) and results in 
precipitation of peroxide containing material (white 
solid, explosion point ca. 160°).3 The peroxide ob­
tained from heptane solutions was reduced with LiAlH4 

to yield 1,3-dihydroxyadamantane (1, X = OH) as the 
major product. Analysis of the benzene-insoluble frac­
tion from the peroxide precipitate corresponds to poly-

CD R. C. Fort, Jr., and P. von R. Schleyer, Chem. Rev., 64, 277 (1964). 
(2) H.StetterandC. WuIfT, Ber.,93, 1366(1960). 
(3) In the presence of the free-radical inhibitor, 2,6-di-/-butyl-p-

cresol, precipitation of peroxide does not occur and loss of 2 proceeds at 
a slower pace (fy, = 30 hr with 3 X 10"2 M inhibitor). 

meric 1,3-dioxyadamantane, [-0-Ci0Hi4-O-J1. Anal. 
Calcd for Ci0H14O2: C, 72.26; H, 8.49. Found: C, 
72.55; H, 8.28. 

1,3-Dehydroadamantane in heptane solutions was 
further characterized by the following rapid reactions:4 

catalytic hydrogenation to yield greater than 92 % ada­
mantane, hydration with 1 M H2SO4 to 1-adamantanol, 
acetolysis to 1-adamantyl acetate, and bromination to 
1,3-dibromoadamantane. Compound 2 is thus a read­
ily available intermediate in the production of many 
bridgehead-substituted adamantanes; e.g., titration of 2 
with iodine in heptane produced 1,3-diiodoadamantane 
(1, X = I), mp 110-111°; nmr (benzene) S 3.19 (H-2), 
2.24 (H-4), 1.24 (H-5 and H-6). Anal. Calcd for 
Ci0Hi4I2: C, 30.95; H, 3.64; I, 65.41. Found: C, 
31.30; H, 3.71; 1,65.11. 

Isolation of 1,3-dehydroadamantane by glpc gave an 
unstable crystalline solid with characteristic infrared ab­
sorptions at 3040 (cyclopropyl C-H stretching),6 2900, 
1450, 1285, 1085, and 895 cm-1. Its nmr spectrum (in 
degassed benzene) showed absorptions at 5 2.73 (broad 
singlet, two protons of H-5), 2.05 (triplet, /6_6 = 1.2 Hz, 
two protons of H-6), 1.66 (closely spaced multiplet for 
two protons of H-2), and a pair of doublets centered at 
1.15 and 1.91 (for the four protons each of H-4a and 
H-4b, / a b = 11 Hz). The large chemical-shift difference 
(0.76 ppm) of the geminal C-4 hydrogens is consistent 
with their positions above (H-4a) and nearer the side 
(H-4b) of the anisotropic cyclopropyl ring.6 The pro­
tons on C-5 and C-6 lie in deshielded positions with re­
spect to the cyclopropyl ring and they appear at unusu­
ally low fields.7 Anal. Calcd for Ci0Hi4: mass, 
134.1095. Found: mass, 134.1086 ± 0.001. 

The great activity of 1,3-dehydroadamantane is no 
doubt due to its highly constrained structure and its re­
laxation to strainless adamantanes as the 1,3 bond is 
broken. Models suggest that compound 2 possesses car 
bon atoms (C-I and C-3) with all four bonds almost ex­
tended from one side of each of these atoms. This rare8 

and unstable carbon configuration allows easy access to 
the approach of reagents from the other side. Inver­
sion of atoms C-I and C-3, with breakage of the weak 
internal cyclopropyl bond, completes the transformation 
to strain-free adamantyl structures. 
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